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ABSTRACT
This work presents a novel group of univariate distributions formed by integrating
the Marshall-Olkin and the Topp-Leone Nadarajah-Haghighi G families. This new
family, designed to enhance flexibility and applicability in data analysis, exhibits
unique structural properties that make it suitable for various statistical applications.
We discuss three notable members of the proposed family, each demonstrating dis-
tinct characteristics and potential use cases with a special case identified within the
family. When considering submodels, the densities, as well as hazard rate plots, re-
veal a range of shapes, showcasing the versatility of the proposed family. A thorough
analysis of certain structural characteristics is carried out. Additionally, a charac-
terization derived from truncated moments is presented. Estimating parameters is
conducted through maximum likelihood estimation and the efficacy of the same is
evidenced through extensive simulation studies. Subsequently, with a specific family
member already identified (the baseline distribution being the exponential distribu-
tion), a comprehensive analysis has been conducted to apply this novel model using
real-life data. Compared to other leading competing models, the new model excels
in all evaluated statistical criteria and tests.
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1. Introduction

Choosing proper statistical distribution is crucial for making informed data analysis
decisions. By selecting a suitable distribution, we can ensure that our models accurately
reflect the underlying data and provide more accurate insights. In finance, healthcare,
and marketing fields, choosing proper distribution for real-life data is crucial, where
even minor errors in decision-making can have significant consequences. So, whenever
analyzing sales data, patient outcomes, or customer behavior, carefully consider which
statistical distribution is most appropriate for the present needs. Selecting a well-
suited distribution in data modeling and analysis is vital to achieving precise decisions.
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Throughout the years, a variety of distribution classes introduced in the literature
to accommodate different data forms, including symmetric, skewed, multimodal, and
heavy-tailed. Kotz and Vicari [26] highlighted key milestones in this development,
including significant methods like the system of differential equations, the Method of
Transformation (Translation), and the Method of Quantiles.

In recent decades, there has been a revived focus on creating more adaptable and
versatile distributions. Methodologies for generating flexible distributions have shifted
towards integrating additional parameters into existing distributions [18], generating
skew distributions [3], the beta-generated method [6], the Transformed-transformer
method (T-X family) [2], and the Composite method [17]. It is fascinating to observe
how various distributions are applied to model real-world phenomena, from stock prices
to weather patterns. However, relying solely on classical distributions for fitting these
data sets may lead to unreliable outcomes. Therefore, for the most dependable results,
it is essential to explore alternative methods and consider modifications to keep pace
with the evolving world.

Researchers have increasingly recognized the effectiveness of adding new parame-
ters to pre-existing distributions. Among these, the Marshall-Olkin (MO) family [18],
and the T-X family [2] are particularly notable. These approaches have led to the
generalization of several distribution families. Refer[1, 5, 12, 13, 20, 21, 23].

The survival function (sf ) and the probability distribution function (pdf ) for the
MO family are defined in (1) and (2), respectively.

H(y) =
αF (y)

F (y) + αF (y)
, α > 0, y ∈ R. (1)

h(y) =
αf(y)

(1− αF (y))2
. (2)

The Nadarajah Haghighi Topp Leone-G (NHTL-G) family [22], serves as an instance
of the T-X family. It is derived from the Nadarajah Haghighi (NH) distribution [19],
and utilizes the parameters β and λ as its generators. For any distribution characterized
by a cdf G(y; ζ), the cdf of the NHTL-G family, along with its corresponding pdf can
be represented as follows

F (y;β, λ, θ, ζ) = 1− e1−{1+λ[1−G(y;ζ)2]θ}β , y ∈ R. (3)

f(y;β, λ, θ, ζ) = 2βλθg(y; ζ)(1−G(y; ζ)2)θ−1G(y; ζ)

{1 + λ[1−G(y; ζ)2]θ}β−1

e1−{1+λ[1−G(y;ζ)2]θ}β , y ∈ R. (4)

The present paper merges the MO-G family with the NHTL-G family to offer a
broader choice of distributions. This development results in a more versatile set of
options that can better serve different types of users. Combining two generator fami-
lies of distributions has become a popular and practical trend in distribution theory.

104



Asian Journal of Statistical Sciences Sini K Pa, Davis Antonyb and V M Chackoa

Researchers such as [15] and [11] are actively exploring combinations and their prop-
erties, uncovering new patterns and relationships. This approach has provided new
insights and expanded the range of applications, leading to significant progress in the
field.

This paper is organized into several sections to explore the Marshall-Olkin
Nadarajah-Haghighi Topp-Leone-G (MONHTL-G) family. Section 2 provides an
overview of this family, while Section 3 examines some of its sub-models. In Sec-
tion 4, we discuss various statistical properties of the family. Section 5 focuses on
characterization derived from truncated moments. Section 6 looks into the use of the
maximum likelihood estimation (MLE) approach for estimating parameters. followed
by a comprehensive simulation study in Section 7. A practical application is presented
in Section 8, and ultimately, the paper concludes in Section 9.

2. MONHTL-G family

This section delves into the MONHTL-G family of distributions, which possesses dis-
tinctive and advantageous properties, making it highly suitable for various applica-
tions. For any continuous baseline distribution, we construct the new family of dis-
tributions by integrating the well-established MO family and NHTL-G family. The
corresponding cdf is expressed in (5) and the associated pdf is in (6).

FMONHTLG(y; ζ) =
1− e1−{1+λ[1−G(y;Φ)2]θ}β

α+ α[1− e1−{1+λ[1−G(y;Φ)2]θ}β ]
. (5)

fMONHTLG(y; ζ) =
2αβλθg(y; Φ)G(y; Φ)(1−G(y; Φ)2)θ−1

(α+ α[1− e1−{1+λ[1−G(y;Φ)2]θ}β ])2

{1 + λ[1−G(y; Φ)2]θ}β−1e1−{1+λ[1−G(y;Φ)2]θ}β , (6)

where α, β, λ, θ are all positive, and G(y; Φ), where Φ represents the parameter set, is
the cdf of the baseline distribution.

2.1. Quantile function

Let us define

u = e1−(1+λ(1−G(y;Φ)2)θ)β .

Then (5) can be reformulated as

FMONHTLG(y; ζ) =
1− u

α+ α(1− u)
. (7)
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The quantile function (qf ) of the MONHTL-G family, denoted as Q(w) = F−1(w), for
w ∈ (0, 1), α 6= 0, β 6= 0, λ 6= 0, θ 6= 0, is the solution to the non-linear equation (8).

Q(w) = G−1

1−

1−

(
1

λ

{[
1− log

(
1− w

1− wα

)]1/β

− 1

})1/θ
1/2

 . (8)

3. The Sub-models within the MONHTL-G family

This section delves into three notable sub-models within the MONHTL-G family, each
distinguished by unique characteristics and advantages. We will explore these sub-
models in depth to highlight their individual contributions and strengths. By the end
of this section, readers will have a comprehensive understanding of the MONHTL-G
family and the versatility and power of its sub-models.

3.0.1. The MONHTL-Lomax (MONHTLLx) Model

Here, we select a random variable (r.v.) X following the Lomax (Lx) distribution with
the sf in (9) as the baseline distribution to characterize MONHTLLx. The resulting
cdf is obtained in (10) and the corresponding pdf is in (11).

G(x; Φ) = (1 + bx)−a, x ≥ 0, a, b > 0. (9)

FMONHTLLx(x; ζ) =
1− e1−{1+λ[1−(1+bx)−2a]θ}β

α+ α[1− e1−{1+λ[1−(1+bx)−2a]θ}β ]
. (10)

fMONHTLLx(x; ζ) =
2αβλθab(1 + bx)−2a(1− (1 + bx)−2a)θ−1

(α+ α[1− e1−{1+λ[1−(1+bx)−2a]θ}β ])2

{1 + λ[1− (1 + bx)−2a]θ}β−1e1−{1+λ[1−(1+bx)−2a]θ}β . (11)

Figure 1 displays the pdf and hazard function (hrf ) graphs for some random param-
eter values. The pdf plot illustrates the impact of parameter adjustments on the distri-
bution’s form. Certain curves display unimodal properties, while others demonstrate a
monotonically decreasing tendency. Moreover, specific cases demonstrate heavier tails,
signifying an increased likelihood of extreme values. The hrf figure illustrates vari-
ous hazard rate patterns, including increasing decreasing, and bathtub-shaped trends.
These differences underscore the adaptability of the MONHTLLx distribution in mod-
eling various real-world circumstances, including reliability analysis and survival stud-
ies.

3.0.2. The MONHTL-Kumaraswamy (MONHTLKw) Model

Consider the Kumaraswamy distribution with sf in (12).

G(x; Φ) = (1− xa)b, 0 ≤ x ≤ 1, a, b > 0. (12)
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Figure 1. The MONHTLLx pdf and hrf plot for random values of parameters.

Then the corresponding MONHTLKw distribution is defined in (13) and (14).

FMONHTLKw(x; ζ) =
1− e1−{1+λ(1−xa)bθ}β

α+ α[1− e1−{1+λ(1−xa)bθ}β ]
, (13)

fMONHTLKw(x; ζ) =
2αβλθabxa−1(1− xa)2b−1[(1− xa)2b]θ−1

{α+ α[1− e1−{1+λ(1−xa)bθ}β ]}2

{1 + λ[1− (1− xa)2b]θ}β−1e1−{1+λ[1−(1−xa)2b]θ}β . (14)

The density and hrf plots for MONHTL-Kw distribution in Fig. 2 effectively capture
unimodal, skewed, and long-tailed distributions, as well as ascending, descending, and
bathtub-like hazard rates. This makes it suitable for applications in reliability analysis,
survival studies, and risk assessment.
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Figure 2. The MONHTLKw pdf and hrf plot for random parameter values.

3.0.3. The MONHTL-Exponential (MONHTLEx) Model

Finally, we consider the exponential (Ex) distribution with cdf G(x;λ) = e−λx; x ≥
0, λ > 0. Then the cdf MONHTLEx distribution is obtained in (15) and the associ-
ated pdf is in (16).

FMONHTLEx(x; ζ) =
1− e1−[1+λ(1−e−2ax)θ]β

α+ α[1− e1−[1+λ(1−e−2ax)θ]β ]
, (15)

fMONHTLEx(x; ζ) =
2aαβλθe−2ax{1 + λ[1− e−2ax]θ}β−1(1− e−2ax)θ−1

{α+ α[1− e1−[1+λ(1−e−2ax)θ]β ]}2

e1−{1+λ[1−e−2ax]θ}β . (16)

Similar to other sub-modals, the MONHTLEx pdf captures unimodal, skewed, and
heavy-tailed distributions, while hrf exhibits increasing, decreasing, and bathtub-
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shaped patterns, as illustrated in Fig. 3.
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Figure 3. The MONHTLEx pdf and hrf plot for random parameter values.

3.1. Special Cases

Choosing α = 1
γ in (1), it reduces to

F (x) =
γG(y; θ)

1− (1− γ)G(y; θ)
,

which is the Geometric Generated family. Substituting baseline distribution as
NHTLG, we get another novel generalized family. That is, the Geometric generalized
NHTLG family.

4. Some Statistical and mathematical properties of MONHTL-G family

4.1. Order Statistics

Here, we explore the core concepts of order statistics within the framework of the
MONHTL-G family.

Let Y1, Y2, ...., Yn be a simple random sample (r.s.) that follows the proposed dis-
tribution with pdf as stated in (5), and the associated order statistics, denoted as
Y1:n, Y2:n, ....Yn:n, are obtained accordingly. The pdf for Ys:n, the sth order statistics,
is readily available as

fMONHTLG
Ys:n (y) =

(−1)s

β(s, n− s+ 1)

n−s∑
w=0

(
n− s
w

)
f(y)F (y)s+w−1, (17)

where β(., .) is the beta function.
Now,

f(y)F (y)s+w−1 =
2αβλθg(y; Φ)G(y; Φ)

[
1−G(y; Φ)2

]θ−1 {
1 + λ[1−G(y; Φ)2]θ

}β−1

{α+ α[1− e1−{1+λ[1−G(y;Φ)2]θ}β ]}s+w+1

e[1−{1+λ[1−G(y;Φ)2]θ}β ]
[
1− e1−{1+λ[1−G(y;Φ)2]θ}β

]s+w−1
. (18)

Rewriting the denominator as (19) and making use of binomial expansion in (20),
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(18) can be expressed by (21).{
α+ α

[
1− e1−

{
1+λ[1−G(y;Φ)2]

θ
}β]}s+w+1

=

{
1− α

{
1−

[
1− e1−

{
1+λ[1−G(y;Φ)2]

θ
}β]}}s+w+1

(19)

(1− y)n =

∞∑
s=0

(
n

s

)
(−y)s, for |y| < 1. (20)

f(y)F (y)s+w−1 =

∞∑
q=0

µqΠq+1(y), (21)

where

µq = 2eαβλθ

∞∑
j,i,l=0

∞∑
m,n,p=0

(
s+ w + j

j

)(
s+ w + i− 1

l

)(
β(m+ 1)− 1

n

)
(
θ(n+ 1)− 1

p

)(
j

i

)(
2p+ 1

q

)
(−1)i+l+m+p+q(1− α)jλn(l + 1)mel

m!
,

and

Πq+1(y) = g(y; Φ)G(y; Φ)q. (22)

Substituting (21) into (18), we get

fMONHTLG
Ys:n (y) =

∞∑
q=0

µ∗qΠq+1(y), (23)

where

µ∗q =
(−1)s

β(s, n− s+ 1)

n−s∑
w=0

(
n− s
w

)
µq. (24)

In addition, the rth moment of the sth order statistic for this family can be expressed
as

E(yrs:n) =

∞∑
q=0

µ∗∗q Πq+1(y), (25)

where, µ∗∗q = (q + 1)µ∗q .
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4.2. Expansion of the density function

To express both the pdf and the cdf of the new family as mixture representations of
the exponentiated-G (Exp-G) distribution, we can express (6) in the following manner:

fMONHTLG(y) = 2eαβλθ

∞∑
i,j,k=0

∞∑
l,m,n=0

2n+1∑
q=0

(−1)i+j+l+n+q e
iλm(i+ 1)l(1− α)i

l!

(
i

j

)
(
j

k

)(
β(l + 1)− 1

m

)(
θ(m+ 1)− 1

n

)(
2n+ 1

q

)
g(y; Φ)G(y; Φ)q.

Or equivalently,

fMONHTLG(y) =

2n+1∑
q=0

δqΠq+1(y), (26)

where,

δq = 2eαβλθ

∞∑
i,j,k=0

∞∑
l,m,n=0

2n+1∑
q=0

(−1)i+j+l+n+q e
iλm(i+ 1)l(1− α)i

(q + 1)l!(
i

j

)(
j

k

)(
β(l + 1)− 1

m

)(
θ(m+ 1)− 1

n

)(
2n+ 1

q

)
and

Πq+1(y) = (q + 1)g(y; Φ)G(y; Φ),

which corresponds to the Exp-G distribution with power parameter (q+1). Similarly,
cdf in (5) can be represented as

F (y) =

2n+1∑
q=0

δqΦq+1(y), (27)

where Φq+1(y) = G(y; Φ)q+1.

4.3. Moments

The moments function is employed to examine various essential distributional charac-
teristics, such as dispersion, kurtosis, asymmetry, and central tendency. Then the sth
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moment about the origin for the MONHTL-G family is:

µs =

∫ ∞
0

ysfMONHTLG(y; ζ) dy

= ∆

∫ ∞
0

ysg(y; Φ)G(y; Φ)q dy

=

2n+1∑
q=0

∆Φs,q, (28)

where ∆ = (q + 1)δq.

4.4. Moment Generating Function (MGF)

For the MONHTL-G family, the MGF can be expressed as given in (29).

My(t) =

∞∑
s=0

ts

s!
E[ys]

=

∞∑
s=0

ts

s!

∞∑
n=0

∆Φs,2n+1, (29)

where

∆ = 2eαβλθ

∞∑
i,j,k=0

∞∑
l,m=0

(−1)i+j+l+n
ei

l!
(k + 1)(1− α)kλm

(i+ 1)l
(
i

j

)(
j

k

)(
β(l + 1)− 1

m

)(
θ(m+ 1)− 1

n

)
,

and

Φs,2n+1 =

∫ ∞
0

ysg(y; Φ)G(y; Φ)2n+1 dy.

4.5. Probability Weighted Moments (PWM)

The PWM of order (r + s) for the r.v. Y under the new model, denoted as νr,s, is
given by (30).

νr,s = E(Y rF (y)s) =

∫ ∞
−∞

Y rF (y)sf(y)dy. (30)
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Considering,

f(y)F (y)s = 2eαβλθ

∞∑
i,j,k=0

∞∑
l,m,n=0

(−1)i+k+l+n e
k(k + 1)lλm(1− α)j

l!

(
j

i

)(
i+ s

k

)
(

2 + s+ j − 1

j

)(
β(l + 1)− 1

m

)(
θ(m+ 1)− 1

n

)
g(y; Φ)G(y; Φ)2n+1.

(31)

Or equivalently

f(y)F (y)s =

2n+1∑
q=0

bqΠq+1(y), (32)

where

bq = 2eαβλθ

∞∑
i,l,k=0

∞∑
l,m,n=0

(−1)i+k+nek(k + 1)lλm(1− α)j

l!

(
j

i

)(
i+ s

k

)
(

2 + s+ j − 1

j

)(
β(l + 1)− 1

m

)(
θ(m+ 1)− 1

n

)
,

and

Πq+1(y) = g(y; Φ)G(y; Φ)2n+1. (33)

Substituting the above result to (30), we can achieve (34).

νr,s =

2n+1∑
q=0

b∗qΨr,q, (34)

where b∗q = (q + 1)bq and Φr,q =
∫∞
−∞ y

rg(y)G(y)qdx is the PWM of the parent distri-
bution.

5. Characterizations

Probability distributions can be characterized in multiple manners, one of which in-
cludes truncated moments. This methodology was first presented by [7] and subse-
quently examined by many scholars including [8, 10, 14, 16, 25], among others. It
is important to recognize that obtaining characterization results in this context fre-
quently necessitates extensive mathematical methods. This section analyzes particular
characterization of the MONHTL-G family through the truncated moment (condi-
tional expectation) of specific functions of a r.v..

We revisit Theorem 10.1 by [8]. As demonstrated by [9], this characterization re-
mains stable under weak convergence.
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Proposition 5.1. Let Y : Ω→ (0,∞) be a continuous r.v. and let

q1(y) = [α+ (1− α)(1− e∇(y))]2

where ∇(y) = 1− {1 + λ[1−G(y; Φ)2]θ}β and

q2(y) = q1(y)e∇(y), y > 0.

Thus, Y has pdf in (6) if and only if the function ζ defined in Theorem 10.1 is of
the form.

Proof. Suppose Y is a r.v. with pdf in (6), then

(1− F (y))E[q1(Y )|Y ≥ y] = e∇(y), y > 0,

and

(1− F (y))E[q2(Y )|Y ≥ y] =
1

2
e2∇(y).

Hence

zeta(y) =
1

2
e∇(y), y > 0.

We also have

ζ(y)q1(y)− q2(y) =
−1

2
q1(y)e∇(y) < 0, y > 0.

Conversely, if ζ is of the above form, then

s′(y) =
ζ
′
(y)q1(y)

ζ(y)q1(y)− q2(y)

= −2βλθ{1 + λ[1−G(y; Φ)2]θ}β−1[1−G(y; Φ)2]θ−1G(y; Φ)

As stated in Theorem 10.1, Y follows a density in (6).

Corollary 5.2. Suppose Y is a continuous r.v.. Let q1(y) be as in Proposition 5.1.
Then Y has a density in (6) if and only if there exist functions q2(y) and ζ(y) defined
in Theorem 10.1 for which the following first-order differential equation holds

s′(x) =
ζ
′
(y)q1(y)

ζ(y)q1(y)− q2(y)
.

= −2βλθ{1 + λ[1−G(y; Φ)2]θ}β−1[1−G(y; Φ)2]θ−1G(y; Φ).

The general solution for the differential equation in the above corollary is

ζ(y) = e−∇(y)

[∫
2βλθ{1 + λ[1−G(y; Φ)2]θ}β−1[1−G(y; Φ)2]θ−1G(y; Φ)e∇(y)(q1(y))−1q2(y) +D

]
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where D is a constant. Proposition 5.1 provides a set of functions satisfying the above
differential equation with D = 0.

6. Parameter Estimation

This section examines the MONHTL-G family, utilizing the maximum likelihood es-
timation (MLE) procedure to estimate the parameters because of its significant theo-
retical and practical benefits. Given a n r.s. extracted from the distribution of Y , the
log-likelihood function, employing the pdf specified in (6), can be expressed as

L(y; ζ) =

n∏
i=1

{
2αβλθg(yi; Φ)G(yi; Φ)(1−G(yi; Φ)2)θ−1

(α+ α[1− e1−{1+λ[1−G(yi,Φ)2]θ}β ])2

}
{
{1 + λ[1−G(yi; Φ)2]θ}β−1e1−{1+λ[1−G(yi,Φ)2]θ}β

}
.

While the log-likelihood (logL) function is

logL = nlog2 + nlogα+ nlogβ + nlogλ+ nlogθ +

n∑
i=1

logg(yi; Φ) +

n∑
i=1

logG(yi; Φ)

+ (θ − 1)

n∑
i=1

log[1−G(yi; Φ)2] + (β − 1)

n∑
i=1

log{1 + λ[1−G(yi; Φ)2]θ}

−
n∑
i=1

{1 + λ[1−G(yi; Φ)2]θ}β − 2

n∑
i=1

log(α+ α[1− e1−{1+λ[1−G(yi;Φ)2]θ}β ]).

(35)

Following standard practice, partial derivatives of logL are set to zero, as demon-
strated below.

∂ logL

∂α
=
n

α
− 2

n∑
i=1

1

α+ α
[
1− e1−{1+λ[1−G(xi;Φ)2]θ}β

] (1− e1−{1+λ[1−G(yi;Φ)2]θ}β
)

(36)

∂ logL

∂λ
=
n

λ
+ (β − 1)

n∑
i=1

[1−G(yi; Φ)2]θ

1 + λ[1−G(yi; Φ)2]θ
− 2

n∑
i=1

α
[
1− e1−{1+λ[1−G(yi;Φ)2]θ}β

]
α+ α

[
1− e1−{1+λ[1−G(yi;Φ)2]θ}β

]
(
−e1−{1+λ[1−G(yi;Φ)2]θ}β

{
1 + λ[1−G(yi; Φ)2]θ

}β−1
[1−G(yi; Φ)2]θ

)
+

n∑
i=1

(
−
{

1 + λ[1−G(yi; Φ)2]θ
}β−1

[1−G(yi; Φ)2]θ
)

(37)
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∂ logL

∂β
=
n

β
+

n∑
i=1

(β − 1)λ[1−G(yi; Φ)2]θ

1 + λ[1−G(yi; Φ)2]θ
− 2

n∑
i=1

α
[
1− e1−{1+λ[1−G(yi;Φ)2]θ}β

]
α+ α

[
1− e1−{1+λ[1−G(yi;Φ)2]θ}β

]
(
−e1−{1+λ[1−G(yi;Φ)2]θ}β

{
1 + λ[1−G(yi; Φ)2]θ

}β
log
{

1 + λ[1−G(yi; Φ)2]θ
})

+

n∑
i=1

(
−
{

1 + λ[1−G(yi; Φ)2]θ
}β

log
{

1 + λ[1−G(yi; Φ)2]θ
})

(38)

∂ logL

∂θ
=
n

θ
+

n∑
i=1

log(1−G(yi; Φ)2) + (β − 1)

n∑
i=1

λ[1−G(yi; Φ)2]θ log[1−G(yi; Φ)2]

1 + λ[1−G(yi; Φ)2]θ

− 2

n∑
i=1

α
[
1− e1−{1+λ[1−G(yi;Φ)2]θ}β

]
α+ α

[
1− e1−{1+λ[1−G(yi;Φ)2]θ}β

]
(
−e1−{1+λ[1−G(yi;Φ)2]θ}β

{
1 + λ[1−G(yi; Φ)2]θ

}β−1
λ[1−G(yi; Φ)2]θ log[1−G(yi; Φ)2]

)
+

n∑
i=1

(
−
{

1 + λ[1−G(yi; Φ)2]θ
}β−1

λ[1−G(yi; Φ)2]θ log[1−G(yi; Φ)2]

)
.

(39)

Due to the numerous parameters involved, finding a solution to the equation system
where each derivative equals zero is extremely laborious. Software like Mathematica,
R, and Python can be used in such cases to obtain maximum likelihood estimates.
In Mathematica, the Maximize function optimizes parameter estimates while enforc-
ing positivity constraints. In R, optimization methods such as nlm (nonlinear min-
imization), optim, and constrOptim provide flexible and efficient solutions for both
constrained and unconstrained optimization problems. In Python, the scipy.optimize
module, specifically minimize, fmin, and differentialevolution, is used to efficiently
solve the system of equations.

7. Simulation

The Monte Carlo (MC) simulation approach analyzes the performance of estimators
for the parameters associated with the newly proposed MONHTL-Ex distribution.
For each experiment, 1000 pseudo-random samples were generated from the proposed
model using selected population parameter values and sample sizes. The selected pa-
rameter combination is (α, β, λ, θ, a) = (0.5, 1.5, 1.5, 2, 1.2). Table 1 presents the simu-
lation outcomes, whereas Figure 4 illustrates the decreasing trend of bias as the sample
size increases.
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Table 1. MONHTL-Ex: Estimates, Bias, and RMSE for

different parameters and sample sizes.

n Parameter Estimates Bias RMSE

50 α 0.2883 -0.2117 0.2669
β 1.5843 0.0843 0.092
λ 1.4106 -0.0894 0.1298
θ 3.3281 1.3281 1.3725
a 1.9776 0.7776 0.7983

100 α 0.2898 -0.2102 0.2594
β 1.5822 0.0822 0.0884
λ 1.4469 -0.0531 0.0732
θ 3.3383 1.3383 1.3754
a 2.0031 0.8031 0.8176

500 α 0.2930 -0.2070 0.2630
β 1.5800 0.0800 0.0910
λ 1.4510 -0.0490 0.0910
θ 3.3050 1.3050 1.3600
a 1.9710 0.7710 0.7910

1000 α 0.294 -0.206 0.26
β 1.578 0.078 0.119
λ 1.451 -0.049 0.091
θ 3.295 1.295 1.35
a 1.961 0.761 0.78

Figure 4. Bias v/s Sample size for each parameter.

8. Data Analysis

This section demonstrates how the MONHTLEx distribution can be effectively uti-
lized in real-world contexts. We examine the goodness-of-fit matrics and maximum
likelihood estimates (MLEs) of model parameters between the MONHTLEx model
and its competitors. The competing models selected are: MO Topp-Leone Weibull
(MOTLWe), MO Topp-Leone Burr XII (MOTLBXII), and MO Topp-Leone Lomax
(MOTLLo) distributions. To determine the most effective model, we utilized R soft-
ware to compute several statistical metrics, including the Kolmogorov-Smirnov (KS)
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statistic, the Akaike Information Criterion (AICr) and its adjusted variant (CAICr),
the Bayesian Information Criterion (BICr), the Hannan-Quinn Information Criterion
(HQICr), and the negative log-likelihood.

To demonstrate this, we use the fatigue data from Birnbaum and Saunders [4], which
yielded a p-value of 0.985. This dataset, presented in Table 2, has been referenced in
recent studies [24], and its descriptive statistics, including skewness and kurtosis, are
provided in Table 3. The TTT plot, histogram, box plot, and violin plot of the data
are shown in Figure 5. The TTT plot supports models with decreasing hazard rates.
Table 4 lists the estimated parameter values, while Table 5 presents statistical metrics,
clearly demonstrating that our model achieves the lowest values across all conditions.

Table 2. The fatigue life of 6061 - T6 aluminum coupons cut

parallel to the direction of rolling and oscillated at 18 cycles

per second. The data set consists of 101 observations with a
maximum stress per cycle of 31,000 psi. The data (×10−3) are

presented below (after subtracting 65).

5 25 31 32 34 35 38 39 39 40
42 43 43 43 44 44 47 47 48 49
49 49 51 54 55 55 55 56 56 56
58 59 59 59 59 63 63 64 64 64
65 65 65 66 66 66 66 67 67 67
67 68 69 69 69 71 71 72 73 73
73 73 74 74 76 76 76 77 77 77
77 79 79 80 81 83 84 84 86 86
87 90 91 92 92 92 92 93 94 97
98 98 98 99 101 103 105 109 136 147

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i/n

T
(i/
n)

(a) TTT plot

0 20 40 60 80 100 120 140
Value

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

Histogram of Fatigue Life Data

(b) Histogram

0 20 40 60 80 100 120 140
Value

1

Box Plot of Fatigue Life Data

(c) Boxplot

0 20 40 60 80 100 120 140
Value

0.8

0.9

1.0

1.1

1.2

Violin Plot of Fatigue Life Data

(d) Violin plot

Figure 5. TTT plot, histogram, box plot, and violin plot of the fatigue data.

9. Conclusion

This research presents a novel class of distributions, referred to as the MONHTL-
G family, which is formed by combining the Topp-Leone, Nadarajah-Haghighi, and
Marshall-Olkin distributions. As a result, the proposed family includes distributions
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Table 3. Descriptive Statistics of Fa-

tigue Life Data.

Statistic Value

Count 100
Mean 68.64
Standard Deviation 22.58
Minimum 5.0
25th Percentile 55.0
Median (50th Percentile) 67.0
75th Percentile 81.5
Maximum 147.0
Skewness 0.383
Kurtosis 1.139

Table 4. Estimates of the competitive models fitted to the fatigue data.

Model Estimates

MONHTLEx(θ, β, α, λ, a) 1.998735 2.004019 0.9977184 1.006349 1.674635
MOTLWe(θ, β, α, λ) 24.1879 20.1026 0.0155 1.5561
MOTLBXII(θ, β, α, λ) 636.0990 634.5008 0.3459 3.8591
MOTLLo(θ, α, λ) 5.8836 7.0752 0.0026 6.8090

Table 5. Statistics of the competitive models fitted to the fatigue data.

Model -LL AIC CAIC BIC HQIC

MONHTLEx 447.8021 885.6043 894.966 872.5784 880.3325
MOTLWe 452.2929 912.5858 913.0069 923.0065 916.8032
MOTLBXII 533.9673 1075.935 1076.356 1086.355 1080.152
MOTLLo 506.3483 1020.697 1021.118 1031.117 1024.914

with a minimum of five parameters, offering greater flexibility, even when adjusting
parameter settings for different applications. We discussed three prominent members
of this family and observed that the pdf and hrf exhibit diverse trends, making the new
family suitable for various real-world applications. Some statistical and mathematical
properties of this family were derived, along with a characterization derived from
truncated moments. To estimate the parameters, we employed the MLE technique. A
simulation study was conducted, considering the exponential distribution as a special
case, where we also applied the MLE method. Furthermore, we analyzed a real-world
dataset under the MONHTLEx model. Among the competing models considered, our
model outperformed others based on various comparison criteria and statistical tests,
demonstrating its effectiveness and applicability.
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10. Appendices

10.1. Appendix A

Theorem 10.1. Let (Ω, F, P ) be a given probability space and let H = [a, b] be an
interval for a < b (d = −∞, e = ∞ might as well be allowed). Let Y : Ω− > H be a
continuous r.v. with the cdf Fp and let Q1 and Q2 be two real functions defined on H
such that,

E[Q1(Y )|Y ≥ y] = E[Q2(Y )|Y ≥ y]ζ(y), y ∈ H,

is defined with some real function ζ. Assume that Q1(y), Q2(y) ∈ C1(H) and F is
twice strictly monotone function and continuously differentiable on the set H. Finally,
assume that the equation Q2ζ = g has no real solution in the interior of H. Then F
can be uniquely determined by the functions Q1, Q2, and ζ, particularly

F (y) =

∫ y

a
C| ζ

′
(u)

ζ(u)Q2(u)−Q1(u)
|e−s(u)du,

where the function s is a solution of the differential equation s
′

= ζ
′
Q2

ζQ1−Q2
and C is

the normalization constant, such that
∫
H dF = 1.
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